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In these lectures, we first review the main steps in the calculation of
diffractive vector meson production within the color dipole approach, and
then compare the results with experimental data from HERA.

1. What is special about diffractive VM production?
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Fig. 1. Left: kinematics of the diffractive VM production via the Pomeron, IP ,

exchange in the t-channel. Right: a typical starting diagram for the calculation of

the total photoabsorption cross section σtot(γ
∗p).

Vector meson production in diffractive DIS, γ∗p → V p, offers a very
rich set of dependences to explore in experiment, Fig. 1, left. One can check
how the cross section depends on the total γ∗p energy W , on the photon’s
virtuality Q2, on the momentum transfer squared t, and also test multi-
ple correlations (for example, one can study how the energy-rise exponent
changes with Q2). All these kinematical parameters can be controlled inde-
pendently and continuously, allowing one to see in full detail the transition
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from soft to hard diffraction in a much cleaner fashion than, for example, in
the inclusive DIS. One can also compare production cross section for differ-
ent mesons, either in the same (e.g. ρ, ρ′, ρ′′, ρ3) or different (ρ, ω, φ, J/ψ,
Υ) isospin-flavor states. Finally, by detecting the scattered electron and
studying the angular dependence of the decay product of the vector meson,
one can reconstruct the helicity structure of the production amplitude in its
full complexity.

From theoretical side, diffractive VM production takes place in a unique
kinematical regime, where various theoretical approaches can be tested.
They range from simple phenomenological Regge-type models for the energy
behavior or a vector dominance inspired model for the Q2-dependence at
small virtualities, to full-fledged pQCD and BFKL calculations. One can
hope that such a clash of various theoretical ideas will lead to a better
understanding of the dynamics of strong interactions.

In these lectures, we will focus only on one particular approach: the
color dipole, or kt-factorization, approach. We will first underline main
steps in the application of this approach to diffractive VM production, and
then discuss the experimental data in this language. More details can be
found in a recent review [1].

2. Basics of the color dipole approach

Let us start with a classical topic in hadronic physics, the Vector Dom-
inance Model (VDM), see e.g. [2]. In the original formulation, the physical
photon is represented as a sum of a bare photon and of a ”hadronic” part
of the photon, |γ∗(Q2)〉 = |γ∗(Q2)〉bare + |γ∗(Q2)〉h. This hadronic part
is represented as an integral over all possible asymptotic (in respect to
strong interactions) hadronic states with photon’s quantum numbers and
with invariant mass M . At not too large masses, the dispersion integral
over M is saturated by the lowest resonances. Such contributions can then
be defined as contributions of vector mesons. For example, in the ρ-meson
flavor-isospin sector, one can rewrite the hadronic part of the virtual photon
as

|γ∗(Q2)〉h =
∑

V

e

fV

m2
V

m2
V +Q2

|V 〉 , (1)

where fV is the e+e− decay constant. With this representation, the ampli-
tude of diffractive production of a vector meson V can be written as

A(γ∗p→ V p) =
∑

V ′

e

fV ′

m2
V ′

m2
V ′ +Q2

〈V |σ̂|V ′〉 , (2)
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Diffraction operator σ̂ introduced here describes how various states V scatter
among each other upon diffractive collision; it incorporates all the micro-
scopic dynamics of diffraction.

At small Q2 the ground state pole dominates in the dispersion integral.
If one assumes that the subsequent scattering process is diagonal in the
space of states |V 〉, then (2) gives a closed expression for the amplitude of
the production of the ground state meson in a given flavor channel. For
example, for the ρ-meson one can write

A(γ∗p→ ρp) ≈ e

fρ

m2
ρ

m2
ρ +Q2

〈ρ|σ̂|ρ〉 . (3)

This simple Ansatz gives a reasonable description of the ρ-production cross
section in the small-Q2 region.

The origin of VDM success becomes transparent in the color dipole ap-

proach, [3]. It applies to the frame where the projectile momentum is large,
so that the transverse motion of its partons is relativistically slowed down.
In a high-energy diffractive reaction, the scattering amplitude has form
A(A → B) = 〈B|σ̂|A〉, where diffractive states are represented as coher-
ent combinations of multipartonic Fock states:

|A〉 = ΨA
qq̄|qq̄〉 + ΨA

qq̄g|qq̄g〉 + . . . , (4)

where integration over all internal degrees of freedom is assumed. Since
the transverse motion is suppressed by γ-factor, i.e. by power of W 2, σ̂
becomes diagonal in this impact parameter representation. Since the lowest
Fock state (color dipole qq̄) dominates, the diffraction operator can be ex-
pressed via the color dipole cross section σdip(~r) of a dipole with transverse
separation ~r. The transition amplitude is represented as

A(A→ B) =

∫

dzd2~r ΨB∗
qq̄ (z, ~r)σdip(~r)Ψ

A
qq̄(z, ~r) , (5)

where z is the quark’s fraction of the lightcone momentum of particle A.
The origin of the VDM success in photoproduction reactions (A = |γ∗〉h)

lies in the fact that the typical wave functions of the ground state vector
meson used in phenomenology are very similar to the transverse photon
lightcone wave function at small Q2. As virtuality Q2 grows, the qq̄ wave
function of the photon shrinks, while the color dipole cross section behaves
as σdip ∝ r2 at small r and reaches a plateau at large r. As a result, the
function under integral (5), where A ≡ γ∗ and B is a ground state vector
meson, peaks at the scanning radius rS ∼ 6/

√

Q2 +M2, [4]. At smallQ2 the
typical scanning radius is large, and the amplitude is roughly proportional
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to the integration measure

A(γ∗ → V ) ∝ r2
S ∝ 1

Q2 +M2
,

which mimics the VDM behavior. At larger Q2 the scanning radius becomes
small and the diffraction cross section itself decreases. This phenomenon of
color transparency produces a more rapid decrease A(γ∗ → V ) ∝ 1/(Q2 +
M2)2 up to logarithmic factors, [3, 4].

At large Q2, Ψγ
qq̄(Q

2) is a coherent superposition of many JPC = 1−−

mesons, including radial and orbital excitations, and transitions 〈V |σ̂|V ′〉
must be taken into account. Generalized VDM remains formally correct,
but becomes very impractical and misses the insight.

Here, we also note that there is a number of deep theoretical issues re-
lated to the color dipole approach. First, it is closely related to the BFKL
approach, [5], see review [6]. The latter is usually formulated in the trans-
verse momentum representation, but the important role of the coordinate
representation has been known since 1986, [7]. At the leading order, one
can enrich BFKL dynamics with running αS and effective gluon propagation
radius to obtain generalized BFKL evolution of dipole cross section, [8]. At
NLO, BFKL kernel was also reformulated in the coordinate representation
recently, [9].

Insight into the origin/limitations of the color dipole formalism from
non-perturbative treatment of the γ∗p scattering is given in [10].

3. σtot(γ
∗p) in kt-factorization

To show the main steps in a typical diffractive calculation within the
color dipole approach, consider the simplest example: the imaginary part of
the forward elastic scattering amplitude A(γ∗p → γ∗p), which is related to
the total photoabsorption cross section σtot(γ

∗p), via the optical theorem.
The calculations are done mostly easily by direct analysis of the Feynman

diagrams in the kt-factorization representation, which is just the Fourier
transform of the color dipole approach. We will start with the lowest order
pQCD diagrams for photon-quark scattering at high energies and then show
how to pass from a quark to the proton by introducing the unintegrated
gluon density of the proton.

3.1. Born-level calculation

At high energy, the dominant contribution to the forward elastic γ∗q
scattering comes from two-loop diagrams such as shown in Fig. 1, right. Its
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amplitude is

A = 4παem
∑

f

e2f · C ·
∫

d4k

(2π)4
d4κ

(2π)4
ūqγ

ν′(p̂− κ̂)γµ
′

uq
(p− κ)2 +m2 + iε

· gµµ′

κ2 + iε
· gνν′

κ2 + iε

×
Tr[(k̂1 +m)êλi

(k̂2 +m)γµ(k̂3 +m)ê∗λf
(k̂4 +m)γν ]

∏

(k2
i −m2 + iε)

. (6)

Here k and κ are momenta inside the quark and gluon loops, respectively,
ef is the electric charge of the quark of flavor f , C is the color factor. At
high energies, this two-loop amplitude can be simplified with the help of
the Sudakov decomposition of the particles’ momenta. Let us introduce
two lightcone vectors p′µ and q′µ, s ≡ (p′ + q′)2 = 2p′q′, such that

qµ = q′µ +
Q2

s
p′µ , pµ = p′µ +

m2

s
q′µ ,

and decompose integration momenta as kµ = zq′µ + yp′µ + ~kµ and κµ =
βq′µ+αp′µ+~κµ, where arrows indicate vectors with transverse components

only. Then, integration, for example, over d4k becomes s dy dz d2~k/2. It
turns out that among four integrals over Sudakov’s variables dy dz dα dβ
two can be immediately calculated via residues. After some algebra (see
details in [11]) one rewrites the imaginary part of the longitudinal integral
as

Im

∫

dy dz dαdβ

propagators
=

4π2

s3

∫ 1

0

dz

z2(1 − z)2
1

(Q2 +M2)2
1

(~κ2)2
, (7)

where M 2 = (~k2 +m2)/z(1 − z) is the invariant mass of the qq̄ pair.
The next step is to “decouple” the Lorentz indices of the upper quark

loop and the lower line. This can be done by rewriting

gµµ′ =
2

s
q′µp

′
µ′ +

2

s
p′µq

′
µ′ + g⊥µµ′ ,

and checking that at large s the first term dominates. The lower line then
becomes ūqq̂

′(p̂− κ̂)q̂′uq ≈ s2δζζ′ , while the trace over the quark loop is

Tr[(k̂1 +m)êλi
(k̂2 +m)p̂′(k̂3 +m)ê∗λf

(k̂4 +m)p̂′] .

Although this trace can be calculated explicitly, there is a more efficient
approach based on the lightcone spinors. We first note that among the
four quark lines, two (k1 and k3) are already on-mass-shell because of the
residues. The other two can be also put on mass shell by the following trick

k̂2 +m = k̂on−shell
2 +m+

k2 −m2

s
p̂′ → k̂on−shell

2 +m,
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since p̂′p̂′ = p′2 = 0. Thus, in the trace all spinors can be treated on-mass-
shell. One can then replace k̂ + m → ∑

ζ uū for quarks and −∑ζ vv̄ for
antiquarks, and represent the trace as a product of scalar building blocks
describing γ → qq̄ or qg → q vertices.

Repeating this calculation for the other diagrams (with two gluons cou-
pled to the qq̄ pair in different ways), one gets for the longitudinal L and
transverse T photon:

ImAL/T = s
8αem

∑

f e
2
f

3π2

∫

dz d2k
d2κ

κ4
α2
SWL/T , (8)

with

WT = m2Φ2Ψ2 + [z2 + (1 − z)2]~Φ1
~Ψ1 , WL = 4z2(1 − z)2Q2Φ2Ψ2 . (9)

Here Ψ2 = 1/[z(1 − z)(M 2 + Q2)] and ~Ψ1 = ~kΨ2, while Φ2 and ~Φ1 are
the coherent sums of initial photon’s wave functions over four diagrams:

Φ2 =
∑

(−1)aΨ2(z,~ka), ~Φ1 =
∑

(−1)a~Ψ1(z,~ka).

3.2. Unintegrated gluon density

In the famous equivalent photon approximation [12] for the electron
scattering off a target, one writes the cross section as a product of photon-
target cross section multiplied with the differential density of equivalent
photons inside an electron with given transverse momentum ~κ and fraction
of electron lightcone momentum xγ . At small xγ one has

F(xγ , ~κ
2) ≡ dnγe

d log xγd log ~κ2
=
αem
π

(

~κ2

~κ2 + κ2
z

)2

. (10)

A similar density of equivalent photons can be defined also for a neutral
system made of charged particles. For example, in positronium one has

F(xγ , ~κ
2) =

αem
π

(

~κ2

~κ2 + κ2
z

)2

·N · [1 − F2(~κ
2)] ,

where F2(~κ
2) is two-particle formfactor and N = 2 is the number of con-

stituents in positronium.
Similar considerations apply for the unintegrated gluon density in pro-

ton, [13]. One can represent the cross section of the γ∗q scattering as the flux
of gluons in the quark multiplied by the γ∗g cross section. Then, switching
from a single quark to the proton, on can define the Born-level unintegrated
density of gluons in the proton:

FBorn
g = CFNc

αs
π

[1 − F2(~κ
2)] .
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In contrast to the equivalent photons, the t-channel gluons interact, and
their interaction modifies the unintegrated gluon density: FBorn

g → Fg(xg, ~κ2).

We do not calculate Fg(xg, ~κ2), but just assume that it is a well-defined
quantity independent of the upper subprocess. This is the main assumption
behind the kt-factorization approach.

With this prescription, the final expression for the total photoabsorption
cross section is

σL/T =
αem

∑

e2f
π

∫

dz d2k
d2κ

κ4
αSF(xg, ~κ

2)WL/T ,

The corresponding structure functions are:

FL/T =
Q2

4π2αem
σL/T , F2 = FL + FT .

Now, it is also instructive to see the result in the transverse coordinate
(impact parameter) representation. To the leading log(1/x), the quark loop

momentum ~k enters the amplitude only via the initial and final photon wave
function, Ψi and Φi, respectively. After 2D Fourier transformation this leads
to ~ri = ~rf , i.e. the color dipole remains frozen in the transverse space. The
photoabsorption cross section takes form

σL/T =

∫ 1

0
dz

∫

d2~r |ΨL,T (z, ~r)|2 σdip(~r) , (11)

where the photon lightcone WFs come form the Fourier transform of Ψi and
Φi, while the dipole cross section is defined as

σdip(~r) =
4π

3

∫

d2~κ

κ4
αsF(xg, ~κ

2) [1 − cos(~κ~r)] . (12)

Thus, not only have we proved expression (5) in the particular case of the
forward photon scattering, but also found the expression for the color dipole
cross section and the lightcone WF of the photon. Later, when calculat-
ing VM production, we will assume that the incoming photon is described
by the same WF, and the the color dipole cross section (or unintegrated
gluon density) is given by the same expression, corrected for the off-forward
kinematics.

3.3. Properties of σdip(r) and F(xg, ~κ
2)

Having expressed the photoabsorption cross section in terms of uninte-
grated gluon density or the color dipole cross section, one can now use the
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experimental data on structure function F2p to get insight into the shape
and properties of these two quantities.

This analysis has been conducted independently by several groups, which
resulted in various parametrizations of σdip(r) and F(xg, ~κ

2). Here, we
describe salient features of these results.

At small dipole sizes, r � 1 fm, the color dipole cross section is small,
σdip(~r) ∝ r2 up to logarithmic corrections, see Eq. (12). This is a manifes-
tation of the famous color transparency, [3]. In this region, one can safely
talk about exchange of perturbative gluons. For large dipoles, r ∼> 1 fm,
the color dipole cross section reaches a plateau at some tens of millibarns,
which is often viewed as one of the sides of the saturation. Typical dipoles
sizes where the transition takes place gradually shift towards smaller r as
the energy increases. In the first approximation, one can also assume that
this shift occurs without changing the shape of σdip(r). This idea leads
to interesting consequences, for example, to the so-called geometric scaling
in inclusive photoabsorption, [14], and in VM production [15]. The color
dipole cross section as non-zero transverse momentum transfer was studied
in [16].

A very illustrative example is the famous Golec-Biernat-Wüsthoff satu-
ration model for σdip(r), [17]:

σdip(r) = σ0

[

1 − exp
(

−r2Q2
s(x)

)]

, (13)

where σ0 = 23 mb, Q2
s(x) = 0.0238 GeV2 ·x−0.29 is saturation scale. Despite

being rather simple, this model incorporates the above mentioned features
and gives a fair description of the F2p. Its further improvement can be found
in [18].

The unintegrated gluons density F(xg, ~κ
2) can also be extracted from the

F2(x,Q
2) data. Its main features are: at fixed xg and large gluon momenta

it approaches the pQCD prediction based on differentiating the conventional
gluon densities: Fpt(xg, ~κ2) ≡ ∂G(xg, ~κ)/∂ log ~κ2. However, Fpt(xg, ~κ2) is
insufficient for the description of processes at small-to-moderate momenta,
where one must add an intrinsically soft part. At extremely small momenta,
when the gluon’s wavelength is larger than the proton, F(xg, ~κ

2) should
decreases due to color-neutrality of the proton. Examples of such fits can
be found in [19, 13].

An important check of the universality of the fits obtained is that they
reproduce well the charm quark contribution to F2(x,Q

2) and the longitu-
dinal structure function, FL(x,Q2), [20].

The color dipole cross section and the unintegrated gluon density rep-
resent the same physical quantity, just viewed from different angles. Both
languages are useful in different contexts. For scattering of small dipoles
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large ~κ2 dominate, and the process can be convenient described in terms of
F(xg, ~κ

2). At large dipoles, where the soft exchange dominates and there
are almost no perturbative gluons, discussion in terms of color dipole cross
section is more natural. Formally, one can still present cross sections involv-
ing unintegrated gluon density, but in this region it just stands for “Fourier
transform of σdip”.

4. Exclusive diffractive production of vector mesons

The forward γ∗p scattering amplitude can be extended analytically to
the non-diagonal transition: γ∗(Q2

1)p → γ∗(Q2
2)p (DVCS would correspond

to Q2
2 = 0). If virtualities remain much smaller than W 2, all the essen-

tial detail of the calculation remain the same, and the amplitude can be
presented analogously to (8):

ImA(Q2
1, Q

2
2) ∝

∫

dzd2~k
d2~κ

(~κ2)2
F(x1, x2, ~κ

2)W (Q2
1, Q

2
2) . (14)

Expressions W (Q2
1, Q

2
2) are calculable as before, while the unintegrated

gluon distribution becomes skewed F(x1, x2, ~κ
2), since x1 6= x2 →. Am-

plitude (14) can be even extended to the timelike region, Q2 = −m2
V . So,

in order to pass to the VM production, one needs to replace the final pho-

ton LC WF with vector meson LC WF, ΨV (z,~k), and take into account
the fact that qq̄ pair can represent different mesons (ground state, excited,
high-spin).

To understand the spin-orbital structure of the qq̄V coupling, recall first
the nonrelativistic example of the proton-neutron-deuteron coupling:

φ†n

[

σiu(p) +Dijσjw(p)
]

φp · V i

Here V i is polarization vector; u(p) and w(p) are spherically symmetric
radial WFs; σi is spinorial structure for the S-wave component, while D ij =
3pipj − δijp2 produces the D-wave spinorial structure.

A similar approach is to be used when constructing the qq̄V coupling:
ū′Γµu ·Vµ ·ΨV (p). Here spinorial structures Γµ (which do not coincide with
γµ!) are to be constructed for S-wave and D-wave VM, while the radial
wave function ΨV (p) is spherically symmetric (in VM rest frame) and is
independent of the polarization state (no ΨT , no ΨL, just Ψ(p2)). Here,
3D-vector p is the half of the relative momentum in the qq̄ pair in the pair

rest frame; in the lab frame p2 = ~p2 + p2
z, where ~p = ~k, pz = (2z − 1)M/2.

The spinorial structure ΓµS for the S-wave state can be constructed via
Melosh transform or simply by requiring that the function in the normal-



10 ivanov printed on March 31, 2008

ization integral depends only on p2:

ΓµS = γµ +
2pµ

M + 2m
.

It differs from naive γµ vertex by Fermi motion correction, which is im-
portant not only for light VM, but also for J/ψ. The D-wave structure is
obtained by contracting ΓµS with the D-wave tensor, [21]:

ΓµD = DµνΓνS = γµ +
M +m

p2
pµ .

The resulting expression for the amplitudes

1

s
ImA(λV , λγ) =

cV
√

4παem
4π2

∫

dzd2~k

z(1 − z)

d2~κ

(~κ+ ~∆/2)2(~κ− ~∆/2)2

×αsF(x1, x2, ~κ, ~∆) ·W S/D(λV , λγ) . (15)

cV is flavor-averaged charge: cv = 1/
√

2, 1/3
√

2, −1/3, 2/3 for ρ, ω, φ, J/ψ.
The list of W S/D(λV , λγ) can be found in [21, 11]. Using Eq. (15), one can
calculate diffractive production of any VM.

5. Understanding experimental data with the color dipole
approach

Since the Pomeron has vacuum quantum numbers, diffractively pro-
duced mesons must have P = C = −1. Other quantum numbers are not
fixed: the mesons can be either ground states (ρ, ω, φ, J/ψ,Υ), or radially,
orbitally or spin-excited states. In the ρ system, these are often identified
with ρ′(1450), ρ′′(1700), ρ3(1690), respectively. Most of the data accu-
mulated and theoretical calculations performed so far concern the ground
states, so this will be the main focus.

5.1. Q2 dependence

In theory, the main Q2-dependence of the VM production cross section
can be read off from the color dipole expression

1

s
ImA(Q2) =

∫

dz d2~r Ψ∗
V (z, ~r)σdip(~r)Ψγ(z, ~r) . (16)

The photon LCWF shrinks as Q2 grows: Ψγ ∼ exp(−Qr), where Q
2

=
z(1 − z)Q2 + m2. With the properties of the color dipole cross section,
the transverse integral in (16) comes roughly from r close to the so-called
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scanning radius, [4], rS ≈ 6/
√

Q2 +m2
V , which allows one to study soft-hard

transition in diffraction in a controllable manner.
The amplitude of small Q2 production of light VM is saturated by the

integration measure, AT (Q2) ∝ r2
S ∝ 1/(Q2 +m2

V ), which mimics the vector
dominance model result. At large Q2 +M2

V color transparency comes into
play, A(Q2) ∝ r2

Sσdip(r
2
S), which leads to a steeper Q2-dependence:

dσL ∝ Q2

[

αSG(x,Q
2
)
]2

(Q2 +m2
V )4

, dσT ∝

[

αSG(x,Q
2
)
]2

(Q2 +m2
V )4

.

Since this cross section is quadratic in the gluon density, one can hope that
diffractive VM production might provide a better means to discriminate
among the models of the gluon density than the inclusive DIS. Let us now
see what the recent data say.

ρ production. Comparison between the experimental data on the Q2-
dependence of the ρ-production and several theoretical calculations is shown
in Fig. 2, left. Except for the Q2 ∼ 1 GeV2 region, where the soft-to-hard
transition takes place, the shape is well reproduced by theory, however there
is large uncertainty in the overall normalization. This is not surprising due
to the uncertainties in the description of the ρ-meson VM in the theoretical
calculations. Currently, new larger data sets are being analyzed by both
ZEUS and H1, [22].

10
-1

1

10

10 2

10 3

10 4

1 10

ZEUS

1

10

10 2

10 -1 1 10 Q2 (GeV2)

σ(
γ* p→

J/
ψ

p)
 (n

b)

0
//

//

MRT (ZEUS-S) × 1.49
MRT (CTEQ6M) × 2.22
MRT (MRST02) × 2.98

< W > = 90 GeV

Fig. 2. Comparison between the data and theoretical calculations of the Q2-

dependence of the ρ (left) and J/ψ production cross sections.

If one wants to extract the gluon densities from these data, one must deal
with several complicating issues. First, other factors such as the diffractive
slope b and the balance between σL and σT depend on Q2; although this
can be eliminated by separately studying dσL/dt and dσT /dt. Second, the

exact knowledge is lacking of the hard scale Q
2

at which the gluon density
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is probed. While for heavy quarkonia such as Υ, Q
2 ≈ (Q2 + m2

V )/4 is
probably a good estimate, for light VM the quark Fermi motion makes the

scale softer, Q
2 ≈ 0.1(Q2 +m2

V ). Moreover, these scales for the longitudinal

and transverse cross sections Q
2
L and Q

2
T are expected to be somewhat

different, [23]. Finally, one can question the applicability of the pQCD

approach at all, noting that in the ρ-production even Q
2

= 2 GeV2 requires
already to Q2 ∼ 20 GeV2. So, it appears that majority of experimental data
on ρ production are in the domain where pQCD is not safely applicable. As
another indication of this, NLO corrections to the VM production cross
section within the collinear factorization approach [24] were recently found
to be huge.

J/ψ production was suggested to be a better probe of gluon den-
sity, as it contains mJ/ψ, which might improve the pQCD applicability and
stability. An example of the comparison of the ZEUS data with some of
the theoretical calculations is shown in Fig. 2, right. One sees that many
theoretical calculations, including the ones with different fits for the gluon
density, describe well the Q2-dependence, but are off by a factor of ∼< 2 in
the overall normalization. So, diffractive J/ψ-production does not appear
to be a particularly good means of distinguishing among the models.

Longitudinal-to-transverse ratio is defined as

R =
σL
σT

, RLT =
σL
σT

· m
2
V

Q2
.

The latter quantity is more convenient as it eliminates some trivial Q2 de-
pendence due to gauge invariance. The asymptotic value of RLT in the limit
of heavy quarkonia with no Fermi motion is one, but in fact even J/ψ is
very far from this asymptotic regime. Note that large Q2 does not fulfill this
requirement, i.e. theory does not predict that RLT → 1 for ρ-production at
large Q2.

Theoretical predictions for this ratio are very sensitive to the details of
the VM wave function, so it appears as one of the most model-dependent
quantities in this process. Models can describe almost any Q2-behavior of
σL/σT ; Fig. 3 illustrates this point. So, what theory really predicts for R
remains unclear.

5.2. Flavor universality: facts and myths

Many parts of the production amplitude depend on Q2 and m2
V through

the same scaling quantity Q
2 ≈ (Q2 +m2

V )/4. If one compares production
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Fig. 3. Longitudinal-to-transverse ratios R (right) and RLT (left) for the ρ-

production as functions of Q2. Solid and dashed lines are the kT -factorization

calculations with different assumptions for the VM wave-function; dotted line is a

prediction from [25] based on the Bloom-Gilman duality arguments.

cross section of different mesons at equal Q
2
, then the pQCD estimate is:

1

η
J/Ψ
V

≡ σ(V )

σ(J/ψ)
≈ mV Γ(V → e+e−)

mJ/ΨΓ(J/Ψ → e+e−)
,

with ρ : ω : φ : J/ψ = 0.32 : 0.029 : 0.077 : 1. Therefore, η
J/Ψ
V σ(V ) plotted

vs. Q2 + m2
V should follow the same trend, which is indeed confirmed by

the data.
It is often stated (on the basis of quark charge counting) that theory

predicts SU(4) universality in VM production cross sections: ρ : ω : φ :
J/ψ = 1 : 1/9 : 2/9 : 8/9. We stress that there is no sound theoretical
argument for SU(4) universality even at large Q2, since there are additional
flavor-dependent factors (e.g. VM wave functions) in the amplitude.

5.3. W -dependence

Since the VM production is a typical diffractive process, the energy
dependence of its cross section is driven by the Pomeron. By changing the
hard scale in the VM production, one can hope to see how the properties of
the QCD Pomeron depend on this hard scale.

The standard practice to quantify the energy dependence of the VM
production cross section is to fit it by a power law:

σ(W ) ∝W δ , δ = 4[αIP (〈t〉) − 1] . (17)
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Here, αIP (t) ≈ αIP (0) + α′
IP · t is the effective Pomeron trajectory and

〈t〉 ≈ 1/B is the average value of the momentum transfer squared. In the
photoproduction limit, there is a robust theoretical prediction

δΥ > δψ(2S) > δJ/ψ > δφ > δρ ,

which is indeed confirmed experimentally. As Q2 increases, the process
becomes harder, and δ = δ(Q2) also rises, both in theory and in experiment.
If plotted against the scaling variable Q2+m2

V , δ for different vector mesons
again becomes a universal function.

Although the parametrization (17) is inspired by the Regge theory, one
must take extreme care when interpreting the data in this language. For
example, one must understand that whenever effective intercept depends on
Q2, the Regge factorization is broken. A nice illustration of this point is
given by the ratio of diffractive VM to total inclusive cross sections:

rVtot =
σγ∗p→V p(W

2, Q2)

σγ
∗p
tot (W 2, Q

2
)

,

where Q
2

= (Q2 +m2
V )/4 is chosen in such a way that makes the hard scales

of the two processes approximately equal. Naively, one might think that
since VM production cross section is quadratic in the Pomeron exchange,
while the total inclusive cross section is linear, this ratio should exhibit a
noticeable W -rise. However, experiment shows [26] that this ratio is roughly
constant for ρ meson at all Q2, but it strongly rises for J/ψ.

However, since the Pomeron is not an isolated Regge pole with fixed

αIP , the effective energy rise exponents for σ(γ∗p → V p) ∝ [G(x,Q
2
)]2

and σtot(γ
∗p) ∝

∫

d logQ
2
G(x,Q

2
) are different. Detailed kt-factorization

calculations indeed confirm experimental findings, [1].

5.4. Helicity structure

Both the virtual photon and the final vector meson can have three po-
larization states, leading to five independent helicity amplitudes A(λV ;λγ):
helicity-conserving (A11, A00) and helicity-violating ones (A01, A10, A1−1).
For the strictly forward production, exact s-channel helicity conservation
(SCHC) takes place: λV = λγ . However, at non-zero transverse momentum

transfer ~∆, A(λV ;λγ) ∝ |~∆||λV −λγ |. Since the cross section is concentrated
inside the diffractive cone, dσ/dt ∝ exp(−B|t|), with B ≈ 4 − 10 GeV−2,

typical |~∆| is small, which makes the contribution of the helicity violating
transitions also small. Hierarchy among helicity amplitudes can be estab-
lished, [27].
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Experimentally, one measures the angular distribution of decay products
(π+π−, etc.) and extracts the spin-density matrix elements raλλ′ , which can
be expressed in terms of helicity amplitudes, [28]. Spin-density matrix for
ρ meson has been studied experimentally in much detail, [29]. Experiments
confirm SCHC dominance and also reliably observe small violation of SCHC
observed, most notably in r5

00 ∝ A01.

5.5. Production of excited mesons

After a decade of data taking at the HERA collider, we have greatly
improved our understanding of diffractive production of various ground state

vector mesons. However, diffractive production of excited states remains
relatively unexplored. The only meson that has been studied in some detail
is ψ(2S), [30]. For the ρ system, where the radial ≈ ρ(1450), orbital ≈
ρ(1700), and spin ρ3(1690) excitations are known, the only publications so
far are from old fixed target experiments, e.g. Omega experiment at CERN,
[31].

Meanwhile, diffractive production of excited ρ-mesons was studied by
theorists. There are calculations of such processes based on Bloom-Gilman
duality, [32], taking into account only radial WF effects, [33], and based
on full kt-factorization calculations, [34, 35]. Results of these calculations
significantly differ in details, but they agree on one point: production of
excited states is remarkably different from the ground state mesons. For or-
bital and spin excitations, the most salient difference is a distinct pattern of
helicity amplitudes and the σL/σT ratio. There is even a prediction [35] that
ρ3 photoproduction should be dominated by helicity violating amplitudes,
a situation that has never been seen in diffraction.

Experimental investigation of excited mesons in diffraction is definitely
worth pursuing and might tell us new things about diffraction, many of
which are not accessible in the ground state VM production.
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